Phép nhân và phép chia các đa thức

AD

Cho a2 + b2 = 1

Tính giá trị của M= 2a6 - 3a4 + 2b4 - 3b4

NL
3 tháng 11 2019 lúc 20:46

\(a^2\ge0\forall a,b^2\ge0\forall b\\ \)

nên \(a^2+b^2=1\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a^2=1\\b^2=0\end{matrix}\right.\\\left\{{}\begin{matrix}a^2=0\\b^2=1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\\b=0\end{matrix}\right.\\\left\{{}\begin{matrix}a=0\\\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

Ta có: M = \(2a^6-3a^4+2b^4-3b^4=a^4\left(2a^2-3\right)-b^4\)

+ Với a = 1, b = 0, thay vào M ta có:

M = \(1^4\left(2.1^2-3\right)-0^4=-1\)

+ Với a = -1, b = 0, thay vào M ta có:

M = \(\left(-1\right)^4\left\{\left(-1\right)^4\left[2\left(-1\right)^2-3\right]\right\}-0^4=-1\)

+ Với a = 0, b = 1, thay vào M ta có:

M = \(0^4\left(2.0^2-3\right)-1^4=-1\)

+ Với a = 0, b = -1, thay vào M ta có:

M = \(0^4\left(2.0^2-3\right)-\left(-1\right)^4=-1\)

Vậy khi \(a^2+b^2=1\) thì M = -1.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
TL
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
NL
Xem chi tiết
MC
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
HD
Xem chi tiết