Violympic toán 7

AT

cho a1\a2=a2\a3=a3\a4=...=a2008\a2009. chứng minh a1\a2009=(a1+a2+....+a2008\a2+a3+....+a2009)2008 nhanh hộ mik nha

MS
9 tháng 2 2018 lúc 22:24

Đặt: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=t\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=\dfrac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+...+a_{2009}}=t\)

Ta có: \(\left\{{}\begin{matrix}\left(\dfrac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}=t^{2008}\\\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}...\dfrac{a_{2008}}{a_{2009}}=t^{2008}=\dfrac{a_1}{a_{2009}}\end{matrix}\right.\Leftrightarrow\left(đpcm\right)\)

Bình luận (0)
NQ
21 tháng 11 2020 lúc 15:12

ai giả đi

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
NM
Xem chi tiết
HM
Xem chi tiết
TT
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết
ND
Xem chi tiết
DS
Xem chi tiết
OM
Xem chi tiết