Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(\sqrt{a}+\sqrt{b}\right)^2\text{≤}\left(a+b\right)\left(1^2+1^2\right)\)
⇔ \(\left(\sqrt{a}+\sqrt{b}\right)^2\text{≤}2016\)
⇔ \(\sqrt{a}+\sqrt{b}\text{≤}\sqrt{2016}\)
⇒ \(P_{MIN}=\sqrt{2016}."="\text{⇔}a=b=504\)