Phân thức đại số

NT

Cho a, b, c thỏa mãn: (1/a)+(1/b)+(1/c)=1/(a+b+c)

Chứng minh rằng: M = [(a^19)+(b^19)].[(b^5)+(c^5)].[(c^2001)+(a^2001)]=0

TH
29 tháng 12 2020 lúc 21:53

ĐK: a,b,c \(\ne\) 0

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

Lại có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

Với \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}\)

\(\Rightarrow\) \(\dfrac{1}{b}+\dfrac{1}{c}=0\) \(\Rightarrow\) \(\dfrac{b+c}{bc}=0\) \(\Rightarrow\) b + c = 0 (vì bc \(\ne\) 0 do a,b,c \(\ne\) 0)

\(\Rightarrow\) b = -c \(\Rightarrow\) b5 = (-c)5 \(\Rightarrow\) b5 + c5 = 0

Thay b5 + c5 = 0 vào M ta được:

M = (a19 + b19).(b5 + c5).(c2001 + a2001)

M = (a19 + b19).0.(c2001 + a2001)

M = 0 (đpcm)

Chúc bn học tốt!

 

Bình luận (2)

Các câu hỏi tương tự
NN
Xem chi tiết
BL
Xem chi tiết
VH
Xem chi tiết
MN
Xem chi tiết
NP
Xem chi tiết
TX
Xem chi tiết
CN
Xem chi tiết
TB
Xem chi tiết
LD
Xem chi tiết