Violympic toán 9

DS

Cho a, b, c là 3 số nguyên dương thỏa mãn a+b+c=3. CMR:

\(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)

TP
28 tháng 8 2019 lúc 18:10

Bài làm :

\(VT=\frac{a}{b\left(b^2+a\right)}+\frac{b}{c\left(c^2+b\right)}+\frac{c}{a\left(a^2+c\right)}\)

\(=\frac{1}{b}\cdot\frac{a}{b^2+a}+\frac{1}{c}\cdot\frac{b}{c^2+b}+\frac{1}{a}\cdot\frac{c}{a^2+c}\)

\(=\frac{1}{b}\cdot\left(1-\frac{b^2}{b^2+a}\right)+\frac{1}{c}\cdot\left(1-\frac{c^2}{c^2+b}\right)+\frac{1}{a}\cdot\left(1-\frac{a^2}{a^2+c}\right)\)

Áp dụng BĐT Cô-si :

\(VT\ge\frac{1}{b}\cdot\left(1-\frac{b^2}{2b\sqrt{a}}\right)+\frac{1}{c}\cdot\left(1-\frac{c^2}{2c\sqrt{b}}\right)+\frac{1}{a}\cdot\left(1-\frac{a^2}{2a\sqrt{c}}\right)\)

\(=\frac{1}{b}\cdot\left(1-\frac{b}{2\sqrt{a}}\right)+\frac{1}{c}\cdot\left(1-\frac{c}{2\sqrt{b}}\right)+\frac{1}{a}\cdot\left(1-\frac{a}{2\sqrt{c}}\right)\)

\(=\frac{1}{b}-\frac{1}{2\sqrt{a}}+\frac{1}{c}-\frac{1}{2\sqrt{b}}+\frac{1}{a}-\frac{1}{2\sqrt{c}}\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\cdot\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)

Lại áp dụng BĐT Cô-si :

\(\frac{1}{\sqrt{a}}\le\frac{\frac{1}{a}+1}{2};\frac{1}{\sqrt{b}}\le\frac{\frac{1}{b}+1}{2};\frac{1}{\sqrt{c}}\le\frac{\frac{1}{c}+1}{2}\)

Do đó :

\(VT\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\cdot\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}{2}\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{4}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(=\frac{3}{4}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\ge\frac{3}{4}\cdot\frac{9}{a+b+c}-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
DS
28 tháng 8 2019 lúc 9:55

giúp vs

Lê Thị Thục HiềnTrần Thanh PhươngVũ Minh Tuấn

Bình luận (0)

Các câu hỏi tương tự
AV
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
ML
Xem chi tiết
AV
Xem chi tiết
NO
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết