§3. Công thức lượng giác

TA

Cho A, B, C là 3 góc của tam giác. CMR:

sin ( A + 2B + C) = -sinBcos A = sin B sin C - cos B cos Ccos A + cos B + cos C = 1 + 4 sin \(\frac{A}{2}\)sin \(\frac{B}{2}\)sin \(\frac{C}{2}\)sin2A + sin2B + sin2C = 2 cos A cos B cos C
TH
9 tháng 8 2019 lúc 14:01

1) \(sin\left(A+2B+C\right)=sin\left(\pi-B+2B\right)\)

=\(sin\left(\pi+B\right)=sin\left(-B\right)=-sinB\)

2) \(sinBsinC-cosBcosC=-cos\left(B+C\right)\)

\(=-cos\left(\pi-A\right)=cosA\)

Bình luận (0)
TH
9 tháng 8 2019 lúc 14:23

4) bạn ơi +2 vào vế phải mới đúng nhé

2+ \(2cosAcosBcosC=\left[cos\left(A+B\right)+cos\left(A-B\right)\right]cosC+2\)

\(=cos\left(\pi-C\right)cosC+cos\left(A-B\right)cos\left(\pi-\left(A+B\right)\right)+2\)

=\(-cos^2C-cos\left(A-B\right)cos\left(A+B\right)+2\)

\(=-cos^2C-\frac{1}{2}\left(cos2A+cos2B\right)+2\)

\(=-cos^2C-\frac{1}{2}\left(2cos^2A-1\right)-\frac{1}{2}\left(2cos^2B-1\right)+2\)

\(=-cos^2C-cos^2A+\frac{1}{2}-cos^2C+\frac{1}{2}+2\)

= sin2C - 1 + sin2A - 1 + sin2C - 1 + 3

= sin2A + sin2B + sin2C

Bình luận (0)

Các câu hỏi tương tự
BT
Xem chi tiết
HN
Xem chi tiết
SK
Xem chi tiết
BT
Xem chi tiết
PT
Xem chi tiết
BT
Xem chi tiết
TY
Xem chi tiết
BT
Xem chi tiết
SK
Xem chi tiết