Ôn tập: Bất phương trình bậc nhất một ẩn

LN

Cho a, b, c là 3 cạnh của 1 tam giác. Cmr:

a2( b+c-a)+ b2( c+ a- b) + c2( a+ b- c) < 3abc

Giúp mình nhé, nghĩ mãi không ra!

ND
2 tháng 5 2018 lúc 19:25

giả sử: \(a>b>c>0\)

Xét hiệu:

\(3abc-a^2\left(b+c-a\right)-b^2\left(c+a-b\right)+c^2\left(a+b-c\right)\)

\(=3abc+a^3+b^3+c^3-ab^2-bc^2-ca^2-ba^2-cb^2-ba^2\)

\(=a^2\left(a-b\right)-b^2\left(a-b\right)-c\left(a+b\right)^2+c\left[a\left(b-c\right)-c\left(b-c\right)\right]\)

\(=\left(a-b\right)\left(a^2+b^2\right)-c\left(a-b\right)^2+c\left(a-c\right)\left(b-c\right)\)

\(=\left(a-b\right)^2\left(a+b-c\right)+c\left(b-c\right)\left(a-c\right)\)

Ta có:

\(a>b>c\Rightarrow a-b>0;a+b>0;b>c;a>c\)

=> Luôn đúng

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
TU
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
TV
Xem chi tiết
VH
Xem chi tiết
BD
Xem chi tiết
NH
Xem chi tiết