Cho a, b, c, d, e khác 0 thỏa mãn điều kiện \(b^2=ac;c^2=bd;d^2=ce\). Chứng minh rằng : \(\dfrac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)=\(\dfrac{a}{e}\)
Cho các số dương a,b,c,d thỏa mãn các điều kiện a2+c2=1 và \(\dfrac{a^4}{b}+\dfrac{c^4}{d}=\dfrac{1}{b+d}\).
Chứng minh rằng: \(\dfrac{a^{2014}}{b^{1007}}+\dfrac{c^{2014}}{d^{1007}}=\dfrac{2}{\left(b+d\right)^{1007}}\)
Cho 4 số a,b,c,d thỏa mãn điều kiện b\(^2\) =ac; c\(^2\) =bd. Chứng minh:
\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cho c2==ab . Chứng minh rằng :
a) \(\dfrac{a^{2^{ }}+c^2}{b^{2^{ }}+c^{2^{ }}}=\dfrac{a}{b}\)
b)\(\dfrac{b^{2^{ }}-a^{2^{ }}}{a^{2^{ }}+c^2}=\dfrac{b-a}{a}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{ac}{bd}=\dfrac{a^2-c^2}{b^2-d^2}\) ( với giả thiết các tỉ số đều có nghĩa )
a) Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thoả mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện
M=a+b=c+d=e+f
Nếu câu b thiếu j thì các bạn cứ bỏ qua nha
1, Cho a, b, c, d là 4 số khác 0 thỏa mãn \(b^2\)=ac và \(c^2\)=bd
Chứng minh rằng: \(\dfrac{2016a^3+2017b^3+2018c^3}{2016b^3+2017c^3+2018d^3}\)=\(\dfrac{a}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng:
a) \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
b)\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
c)\(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)