Violympic toán 7

YC

Cho a, b, c, d, e khác 0 thỏa mãn điều kiện \(b^2=ac;c^2=bd;d^2=ce\). Chứng minh rằng : \(\dfrac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)=\(\dfrac{a}{e}\)

AH
4 tháng 9 2018 lúc 22:57

Lời giải:

Từ \(b^2=ac; c^2=bd; d^2=ce\)

\(\Rightarrow \frac{b}{a}=\frac{c}{b}; \frac{c}{b}=\frac{d}{c}; \frac{d}{c}=\frac{e}{d}\)

\(\Rightarrow \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}\).

Đặt \( \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}=k\Rightarrow b=ak; c=bk; d=ck; e=dk\)

Khi đó:

\(\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a^4+b^4+c^4+d^4}{a^4k^4+b^4k^4+c^4k^4+d^4k^4}=\frac{a^4+b^4+c^4+d^4}{k^4(a^4+b^4+c^4+d^4)}=\frac{1}{k^4}(1)\)

Và: \(bcde=ak.bk.ck.dk\)

\(\Rightarrow e=ak^4\Rightarrow \frac{a}{e}=\frac{1}{k^4}(2)\)

Từ \((1);(2)\Rightarrow \frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a}{e}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LN
Xem chi tiết
TK
Xem chi tiết
CD
Xem chi tiết
GG
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
NH
Xem chi tiết
NK
Xem chi tiết