Violympic toán 7

CC

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{ac}{bd}=\dfrac{a^2-c^2}{b^2-d^2}\) ( với giả thiết các tỉ số đều có nghĩa )

HD
24 tháng 9 2017 lúc 9:34

Ta có: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Chúc bạn học tốt!

Bình luận (2)
KV
24 tháng 9 2017 lúc 9:39

Từ giả thiết \(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)=>\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)

=> \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (đpcm). Tick đúng cho tui nhé

Bình luận (0)

Các câu hỏi tương tự
DX
Xem chi tiết
CC
Xem chi tiết
TL
Xem chi tiết
HK
Xem chi tiết
ML
Xem chi tiết
PT
Xem chi tiết
TD
Xem chi tiết
DX
Xem chi tiết
H24
Xem chi tiết