Violympic toán 9

TD

Cho a, b, c, d >0. CMR:

\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)

AH
15 tháng 8 2018 lúc 10:43

Lời giải:

Ta có:

\(\sqrt{(a+b)(c+d)}\geq \sqrt{ac}+\sqrt{bd}\)

\(\Leftrightarrow (a+b)(c+d)\geq (\sqrt{ac}+\sqrt{bd})^2\)

\(\Leftrightarrow ac+ad+bc+bd\geq ac+bd+2\sqrt{acbd}\)

\(\Leftrightarrow ad+bc-2\sqrt{acbd}\geq 0\)

\(\Leftrightarrow (\sqrt{ad}-\sqrt{bc})^2\geq 0\) (luôn đúng)

Ta có đpcm. Dấu "=" xảy ra khi $ad=bc$

Hoặc có thể áp dụng trực tiếp BĐT Bunhiacopxky:

\((a+b)(c+d)=[(\sqrt{a})^2+(\sqrt{b})^2][(\sqrt{c})^2+(\sqrt{d})^2]\)

\(\geq (\sqrt{ac}+\sqrt{bd})^2\)

\(\Rightarrow \sqrt{(a+b)(c+d)}\geq \sqrt{ac}+\sqrt{bd}\) (đpcm)

Bình luận (0)