Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a, b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a,b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho a + b + c = 1 và a/1 + b/1 + c/1 = 0.CMR: a^2 + b^2 + c^2 = 1
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)
Cho 3 số thực a,b,c ≠ 0 và a + b + c =0. CMR
\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{b^2+a^2-c^2}\) = 0
Cho a,b,c là các số nguyên khác 0 thoả mãn điều kiện (1/a+1/b+1/c)^2=1/a^2+1/b^2+1/c^2 cmr: a^3+b^3+c^3
Cho a,b,c là các số nguyên khác 0 thoả mãn điều kiện (1/a+1/b+1/c)^2=1/a^2+1/b^2+1/c^2 cmr: a^3+b^3+c^3 chia hết cho 3
Cho a,b,c >0, a+b+c=3. CMR: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho -1<a, b, c<1 và a+b+c=0
CMR: a^2+b^2+c^2<2