Violympic toán 8

H24

cho a, b, c > 0 và \(a^2+b^2+c^2=3\)

Cmr:

\(\frac{a}{\sqrt{a^2+b+c}}+\frac{b}{\sqrt{b^2+a+c}}+\frac{c}{\sqrt{c^2+a+b}}\le\sqrt{3}\)

AH
3 tháng 7 2019 lúc 21:38

Lời giải:
Áp dụng BĐT Bunhiacopxky:

\((a^2+b+c)(1+b+c)\geq (a+b+c)^2\Rightarrow \sqrt{a^2+b+c}\geq \frac{a+b+c}{\sqrt{1+b+c}}\)

\(\Rightarrow \frac{a}{\sqrt{a^2+b+c}}=\frac{a\sqrt{1+b+c}}{a+b+c}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \frac{a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}}{a+b+c}\)

Tiếp tục sd BĐT Bunhiacopxky:

\((a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b})^2\leq (a+b+c)(a+ab+ac+b+ba+bc+c+ca+cb)\)

\(a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}\leq \sqrt{(a+b+c)(a+b+c+2ab+2bc+2ac)}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\((a+b+c)^2\leq 3(a^2+b^2+c^2)=9\Rightarrow a+b+c\leq 3\Rightarrow a+b+c\leq a^2+b^2+c^2\)

Do đó:

\(a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}\leq \sqrt{(a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac)}\)

\(=\sqrt{(a+b+c)^3}\)

\(\Rightarrow \text{VT}\leq \frac{\sqrt{(a+b+c)^3}}{a+b+c}=\sqrt{a+b+c}\leq \sqrt{3}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết