Cho a,b,c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
cho a b c > o cmr -a+b+c/2a+a-b+c/2b+a+b-c/2c >= 3/2
Cho a + b + c = 3 và a, b, c > 0. CMR:
\(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+2a^2}\ge1\)
cho a,b,c thỏa mãn 0 ≤ a,b,c ≤ 1. Cmr: \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)
Bài 1: Cho a,b,c là những số dương thỏa mãn: a+b+c=3
CMR: \(\dfrac{a^2}{a+2b^3}+\dfrac{b^2}{b+2c^3}+\dfrac{c^2}{c+2a^3}\ge1\)
Bài 2: Cho a, b, c thỏa mãn: ab+bc+ca=3
CMR: \(\dfrac{a}{2b^3+1}+\dfrac{b}{2c^3+1}+\dfrac{c}{2a^3+1}\ge1\)
Bài 3: Cho a, b, c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+3b\)
Dấu = xảy ra khi a=b=2c
Cmr nếu a,b,c là ba cạnh của 1 tam giác thì \(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4>0\)
Cho a,b,c > 0. CMR P = \(\frac{a^2}{b\left(b+2c\right)}+\frac{b^2}{c\left(c+2a\right)}+\frac{c^2}{a\left(a+2b\right)}\) ≥ 1
cho a,b,c là các số thực . Cmr:
\(\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}\ge3+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
cho a,b,c là các số thực dương
Cmr: \(\dfrac{2a}{b}+\dfrac{2b}{c}+\dfrac{2c}{a}\ge3+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)