Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm số nguyên dương x,y biết:
a) \(x^2+5y^2+2x-4xy-10y-9=0\)
b) \(5x^2+5y^2+8xy+2+2y-2x=0\)
c) \(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
d) \(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
Cmr:
1, \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}>0\)
2, \(f\left(x\right)=4x^2-28x+50>0\)
3, \(f\left(x\right)=-16x^2+72x-82< 0\)
4, \(f\left(x\right)=9x^2+66x-122< 0\)
5, \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11>0\)
6, \(f\left(x;y\right)=13x^2+y^2+4xy-34x-2y+27>0\)
tìm x và y sao cho biểu thức M= 8x^2+y^2-4xy-16x+17 đạt giá trị nhỏ nhất?
Bài 1) a) (2x+3y)2
b) (25x2-10x+1)
c) (x2-2y)2
d) 16x2-9y2
Bài 2) Tìm GTNN của biểu thức
D= x2+2y2-2xy-6y+2x+2020
Q= 2x2-4xy+y2-4x+6y+10
Cho x và y thỏa mãn : \(x^2+2xy+6x+6y+2y^2+8=0\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2016
Giúp em với !
Cho 2 số x , y thỏa mãn 4x^2 - 4xy +y^2 = 0.
Tính giá trị biểu thức P = \(\dfrac{x+y}{x-y}\)
a) tìm x,y,z thỏa mãn pt sau:9x^2+y^2+2x^2-18x+4z-6y+20=0
b)cho x/a+y/b+z/c=1 và a/x+b/y+c/z=0. Chứng minh rằng x^2/a^2+y^2/b^2+z^2/c^2=1
tìm gtnn của biểu thức
a/A= x^2 + 2y^2+2xy +4x + 6y +19
b/B=2x^2+y^2+2xy-2y-4
c/C=4x^2 +2xy-4x+4xy-3
tìm gtln
A=5-2x^2-4y^2+4xy-8x-12y
B=2-5x^2-y^2-4xy+2x