Violympic toán 8

TT

Cho 4 số a,b,c,d bất kỳ chứng minh rằng:\(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)<\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)

TK
24 tháng 2 2020 lúc 14:16

Giả sử BĐT đúng , Bình phương 2 vế đc

\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ac+bd\right)\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\).Bình phương 2 vế đc

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2+b^2c^2\ge2abcd\Leftrightarrow\left(ad-bc\right)^2\ge0\)(luôn đúng)

Vậy BĐT luôn đúng mà bạn ghi sai dấu

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TT
Xem chi tiết
DA
Xem chi tiết
NV
Xem chi tiết
KC
Xem chi tiết
KH
Xem chi tiết
DN
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết