Violympic toán 9

ND

cho 3 số x,y,z đôi một khác nhau và x+y+z=0 Tính\(P=\dfrac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}\)

KB
3 tháng 3 2019 lúc 17:32

Ta có \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3+3xy\left(x+y\right)=0\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

Đặt \(A=2xy^2+2yz^2+2zx^2+3xyz=2xy^2+2yz^2+2zx^2+x^3+y^3+z^3\)

\(=x^2\left(2z+x\right)+y^2\left(2x+y\right)+z^2\left(2y+z\right)\)

Do \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}2z+x=z-y\\2x+y=x-z\\2y+z=y-x\end{matrix}\right.\)

\(\)\(\Rightarrow A=x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\)

\(=x^2\left(z-y\right)-y^2\left(z-y+y-x\right)+z^2\left(y-x\right)\)

\(=\left(x^2-y^2\right)\left(z-y\right)-\left(z^2-y^2\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(z-y\right)\left(x+y-z-y\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

\(\Rightarrow\dfrac{2018\left(x-y\right)\left(y-z\right)\left(x-z\right)}{A}=2018\)

\(\Rightarrow P=2018\)

Vậy \(P=2018\)

Bình luận (1)

Các câu hỏi tương tự
DF
Xem chi tiết
UI
Xem chi tiết
BA
Xem chi tiết
LA
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
DF
Xem chi tiết