Violympic toán 9

NM

Cho 3 số thực dương a,b,c. CMR: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)

H24
18 tháng 10 2019 lúc 22:32

Với x là số dương, áp dụng bđt cauchy ta có:

\(\sqrt{x^3+1}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x+1+x^2-x+1}{2}=\frac{x^2+2}{2}\)

=> \(\sqrt{\frac{1}{x^3+1}}\ge\frac{2}{x^2+2}\left(1\right)\)

Áp dụng bđt (1) ta được:

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}=\frac{2a^2}{\left(b+c\right)^2+2a^2}\)

Suy ra \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{2a^2}{2\left(b^2+c^2\right)+2a^2}=\frac{a^2}{a^2+b^2+c^2}\left(2\right)\)

Tương tự ta có: \(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^3}{a^3+b^3+c^3}\left(3\right);\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^3}{a^3+b^3+c^3}\left(4\right)\)

Cộng (2),(3),(4) vế theo vế:

\(VT\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
TK
Xem chi tiết
NH
Xem chi tiết
VP
Xem chi tiết
KN
Xem chi tiết
AR
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết