Ôn tập cuối năm phần số học

NP

cho 3 số dương x,y,z thỏa mãn x2+y2+z2 \(\le\) 3. Tìm min của P = \(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

AH
20 tháng 2 2019 lúc 10:10

Lời giải:

Cách 1:

Áp dụng BĐT S.Vacxo ta có:

\(\frac{1}{xy+1}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{1+xy+1+yz+1+xz}=\frac{9}{3+xy+yz+xz}(1)\)

Theo BĐT Cauchy ta có bổ đề quen thuộc:

\(xy+yz+xz\leq x^2+y^2+z^2\leq 3(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9}{3+xy+yz+xz}\geq \frac{9}{3+3}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)

Cách 2:

Áp dụng BĐT Cauchy cho các số dương:

\(\frac{1}{xy+1}+\frac{xy+1}{4}\geq 2.\sqrt{\frac{1}{xy+1}.\frac{xy+1}{4}}=1\)

\(\frac{1}{yz+1}+\frac{yz+1}{4}\geq 2.\sqrt{\frac{1}{yz+1}.\frac{yz+1}{4}}=1\)

\(\frac{1}{xz+1}+\frac{xz+1}{4}\geq 2.\sqrt{\frac{1}{xz+1}.\frac{xz+1}{4}}=1\)

Cộng tất cả các BĐT trên theo vế và rút gọn:

\(\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9-(xy+yz+xz)}{4}\geq \frac{9-3}{4}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
MM
Xem chi tiết
MM
Xem chi tiết
QC
Xem chi tiết
QS
Xem chi tiết
HL
Xem chi tiết
NH
Xem chi tiết
BS
Xem chi tiết
QL
Xem chi tiết
NM
Xem chi tiết