Ôn tập toán 7

TG

cho 3 số dương x,y,z sao cho thỏa mãn điều kiện:

a)\(\frac{x}{y}=\frac{2}{3}\);\(\frac{x}{3}=\frac{z}{5}\) và \(^{x^2+y^2+z^2=\frac{217}{4}}\)

NT
7 tháng 8 2016 lúc 11:17

Từ $\frac{x}{y}=\frac{2}{3}\implies \frac{x}{2}=\frac{y}{3}\implies \frac{x}{6}=\frac{y}{9}(1)$(chia mỗi vế cho 3).

Từ $\frac{x}{3}=\frac{z}{5}\implies \frac{x}{6}=\frac{z}{10}(2)$(chia mỗi vế cho 2).

Từ (1) và (2) suy ra: $\frac{x}{6}=\frac{y}{9}=\frac{z}{10}(=a)$.

$\implies x=6a;y=9a;z=10a$

$\implies x^2+y^2+z^2=36a^2+81a^2+100a^2=\frac{217}{4}\implies a^2=\frac{1}{2}\implies a=\frac{1}{2}\text{ hoặc } a=\frac{-1}{2}$.

Thế vào ta được: $(x;y;z)=(3;\frac{9}{2};5)$ hoặc $(x;y;z)=(-3;-\frac{-9}{2};-5)$

Bình luận (0)
IM
7 tháng 8 2016 lúc 11:20

\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{6}=\frac{y}{9}\left(1\right)\)

\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{z}{10}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)

\(\Rightarrow\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}\)

Áp dụng tc của dãy tỉ số bằng nhau Ta có

\(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{\frac{217}{4}}{217}=\frac{1}{4}\)

\(\Rightarrow\begin{cases}x=\pm3\\y=\pm\frac{9}{2}\\z=\pm5\end{cases}\)

Mà 6;9;10 cùng dấu

=> x;y;z cùng dấu

\(\Rightarrow\left(x;y;z\right)\in\left\{\left(3;\frac{9}{2};5\right);\left(-3;-\frac{9}{2};-5\right)\right\}\)

Bình luận (0)

Các câu hỏi tương tự
TG
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết