Đại số lớp 8

KH

Cho 3 số dương a, b, c thoả mãn: abc = 1
Tìm GTNN của \(P=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)

 
LF
10 tháng 1 2017 lúc 18:07

\(P=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2\left(b+c\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\left(abc=1\right)\)

\(=\frac{1}{a^2\left(\frac{1}{c}+\frac{1}{b}\right)}+\frac{1}{b^2\left(\frac{1}{c}+\frac{1}{a}\right)}+\frac{1}{c^2\left(\frac{1}{b}+\frac{1}{a}\right)}\)

\(=\frac{\frac{1}{a^2}}{\frac{1}{c}+\frac{1}{b}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{a}}\)

Đặt \(\left\{\begin{matrix}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{matrix}\right.\) suy ra \(xyz=1\). Khi đó:

\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

Áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix}\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\\\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\\\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\end{matrix}\right.\).Cộng theo vế ta có:

\(P+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{3}{2}\left(x+y+z\ge3\sqrt[3]{xyz}=3\right)\)

Bình luận (1)

Các câu hỏi tương tự
ND
Xem chi tiết
TN
Xem chi tiết
VQ
Xem chi tiết
VQ
Xem chi tiết
BP
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
CG
Xem chi tiết