Violympic toán 8

AW

Cho 3 số a,b,c sao cho \(-1\le a,b,c\le2\) va a+b+c=0 CMR a2+b2+c2\(\le6\)

MS
19 tháng 3 2018 lúc 20:58

8 hay 6???

Bình luận (3)
HM
19 tháng 3 2018 lúc 22:26

Ta có :

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\) (1)

Ta lại có :

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)

Tương tự :

\(b^2+c^2\ge2bc\)

\(a^2+c^2\ge2ac\)

Do đó :

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\) (2)

Thay (2) vào (1) ta được:

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow ab+bc+ac\le0\)

\(\Rightarrow2\left(ab+bc+ac\right)\le0\) (3)

Ta có : \(a,b\ge-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+1\ge0\\b+1\ge0\end{matrix}\right.\Rightarrow\left(a+1\right)\left(b+1\right)\ge0\)

\(\Rightarrow ab+a+b+1\ge0\)

Tương tự:

\(bc+c+b+1\ge0\)

\(ac+c+a+1\ge0\)

Do đó :

\(ab+a+b+1+bc+b+c+1+ac+a+c+1\ge0\)

\(\Rightarrow\left(ab+bc+ac\right)+2\left(a+b+c\right)+3\ge0\)

\(\Rightarrow\left(ab+bc+ac\right)+3\ge0\) (do \(a+b+c=0\) )

\(\Rightarrow ab+bc+ac\ge-3\)

\(\Rightarrow2\left(ab+bc+ac\right)\ge-6\) (4)

Từ (3) và (4) ta có:

\(0\ge2\left(ab+bc+ac\right)\ge-6\) (5)

Từ (1) và (5) suy ra :

\(0\le a^2+b^2+c^2\le6\)

\(\rightarrowđpcm\)

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
H24
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
UN
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
NH
Xem chi tiết
XX
Xem chi tiết