Cho hàm số \(y=\dfrac{x^3}{3}-\left(m-1\right)x^2+3\left(m-1\right)x+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng \(\left(1;+\infty\right)\)
Cho dãy số (un), biết u1= 2, un+1= \(\dfrac{2017+u_n}{2019-u_n},n\ge1\) . Xác định công thức số hạng tổng quát un và tìm limun
Tìm \(x\) biết:
\(\left(\sqrt{3}\right)^x=243\)
\(0,1^x=1000\)
\(\left(\dfrac{1}{2}\right)^x=1024\)
\(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
\(5^{x-1}+5^{x+2}=3\)
Giải bất phương trình
\(\dfrac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}>x-\dfrac{1}{2}\)
Tính đạo hàm của các hàm số sau :
a) \(y=\dfrac{1+x-x^2}{1-x+x^2}\)
b) \(y=\dfrac{\left(2-x^2\right)\left(3-x^3\right)}{\left(1-x\right)^2}\)
c) \(y=\cos2x-2\sin x\)
d) \(y=\dfrac{\cos x}{2\sin^2x}\)
e) \(y=\cos^2\dfrac{x}{3}\tan\dfrac{x}{2}\)
f) \(y=\sqrt{\sin\left(2x-\dfrac{\pi}{6}\right)}\)
g) \(y=\cos\dfrac{x}{x+1}\)
h) \(y=\dfrac{x^2-1}{\sin3x}\)
i) \(y=3\sin^2x\cos x+\cos^2x\)
k) \(y=\sqrt{7-4x}\cot3x\)
a) Tính đạo hàm của hàm số \(y=\sqrt{sinx+cosx}\)
b) Hãy viết phương trình tiếp tuyến với đồ thị (C) của hàm số \(y=\dfrac{x+3}{x-1}\) biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{4}x+5\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow a}\dfrac{\sin x-\sin a}{x-a}\)
b) \(\lim\limits_{x\rightarrow1}\left(1-x\right)\tan\dfrac{\pi x}{2}\)
c) \(\lim\limits_{x\rightarrow\dfrac{\pi}{3}}\dfrac{2\sin^2x+\sin x-1}{2\sin^2x-3\sin x+1}\)
d) \(\lim\limits_{x\rightarrow0}\dfrac{\tan x-\sin x}{\sin^3x}\)
1. Kết quả của limx->-∞ x5
A. -∞
B. 5
C. 0
D. +∞
2. Cho tứ diện đều ABCD. Gọi M là trung điểm. Khẳng định nào sau đây đúng?
A. AB⊥ CD
B. AB⊥ BM
C. AM⊥ BM
D. AB⊥ BD
3. Với k là số nguyên dương, c là hằng số. Kết quả của giới hạn limx->+∞ \(\dfrac{c}{x^k}\)
bằng:
A. 0
B. -∞
C. +∞
D. x0k
4. Hàm số nào sau đây không liên tục trên R?
A. f(x) = \(\sqrt{x^2+2}\)
B. f(x) = \(\sqrt{\dfrac{1}{x^2+3}}\)
C. f(x) = -4x3-3x2+1
D. f(x) = \(\dfrac{2}{x-1}\)
5. Tìm đạo hàm của hàm số: y= x4-3x2+2x-1 trên (-∞, +∞)
A. y'= 4x4-6x+2
B. y'= 4x3-3x+2
C. y'= 4x3-6x+2
D. y'= 4x3-6x+3
6. Cho hàm số u = u(x); v = v(x) có đạo hàm tại mọi điểm trên khoảng K; v(x) #0, ∀x∈K. Chọn công thức đúng:
A. \(\left(\dfrac{u}{v}\right)^{ }\)' = \(\dfrac{uv'+u'v}{v}\)
B. \(\left(\dfrac{u}{v}\right)\)' = \(\dfrac{u'v+uv'}{v^2}\)
C. \(\left(\dfrac{u}{v}\right)\)' = \(\dfrac{uv'-u'v}{v^2}\)
D. \(\left(\dfrac{u}{v}\right)\)' = \(\dfrac{u'v-uv'}{v^2}\)
7. Đạo hàm của hàm số y= sin(3x+2)
A. y' = 3cos(3x+2)
B. y' = cos(3x+2)
C. y' = cos(3x+2). (3x+2)
D. y' = 3sin(3x+2)
Tính các giới hạn :
a) \(\lim\limits_{x\rightarrow1}\dfrac{4x^5+9x+7}{3x^6+x^3+1}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{x^3+3x^2-9x-2}{x^3-x-6}\)
c) \(\lim\limits_{x\rightarrow-1}\dfrac{x+1}{\sqrt{6x^2+3}+3x}\)
d) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{9+5x+4x^2}-3}{x}\)e) \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[3]{10-x}-2}{x-2}\)
f) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x+8}-\sqrt{8x+1}}{\sqrt{5-x}-\sqrt{7x-3}}\)