Bài 10: Tính chất chia hết của một tổng. Luyện tập

MA

Câu 5. Chứng minh rằng tích 6 số tự nhiên liên tiếp chia hết cho 48.

H9
17 tháng 8 2023 lúc 10:47

Gọi 6 số đó là:

\(x,\left(x+1\right),\left(x+2\right),\left(x+3\right),\left(x+4\right),\left(x+5\right)\)

Mà: \(x\left(x+1\right)\) là hai số tự nhiên liên tiếp nên sẽ chia hết cho 2

\(\left(x+2\right)\left(x+3\right)\) là hai số tự nhiên liên tiếp nên sẽ chia hết cho 2

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) chia hết cho 2.2 = 4 

Mà: \(x\left(x+1\right)\left(x+2\right)\) chia hết cho 3

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) sẽ chia hết cho 4.3 = 12 

Và: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\) sẽ chia hết cho 4 nên

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\) sẽ chia hết cho 12.4 = 48

Bình luận (0)