Violympic toán 8

H24

Câu 4 :

1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D 

a, CHứng minh tứ giác BHCD là hình bình hành 

b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K  . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm

2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)

AH
29 tháng 3 2021 lúc 23:13

1. 

Câu 1:

a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$

Tương tự: $BD\parallel CH$

Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành

b) 

Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.

Ta có:

$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$

$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$

$\Rightarrow BO=CO(1)$ 

$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$

Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)

$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$

Mặt khác:

$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$

Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.

$\Rightarrow OK=\frac{AH}{2}=3$ (cm)

 

Bình luận (2)
AH
29 tháng 3 2021 lúc 23:13

Hình câu 1:

undefined

Bình luận (2)
AH
29 tháng 3 2021 lúc 23:23

Hai bài toán khác nhau thì bạn đặt bài toán 1 là câu 1, bài toán 2 là câu 2 cho dễ phân biệt.

Câu 2:

Gọi $AB=c; BC=a; CA=b$. Áp dụng tính chất đường phân giác thì:

$\frac{AD}{CD}=\frac{AB}{BC}=\frac{c}{a}$

$\Rightarrow \frac{b}{CD}=\frac{AC}{CD}=\frac{AD+CD}{CD}=\frac{c+a}{a}$

$\Rightarrow CD=\frac{ab}{a+c}$

Hoàn toàn tương tự:

$BE=\frac{ca}{a+b}$

Xét tam giác $CDB$ có phân giác $CI$. Áp dụng tính chất đường phân giác:

$\frac{ID}{BI}=\frac{CD}{BC}=\frac{ab}{a(a+c)}=\frac{b}{a+c}$

$\Rightarrow \frac{BD}{BI}=\frac{a+b+c}{a+c}$

Tương tự với tam giác $BEC$ phân giác $BI$ thì: $\frac{CE}{CI}=\frac{a+b+c}{a+b}$

Thay vô điều kiện $BD.CE=2BI.CI$ thì:

$\frac{BD}{BI}.\frac{CE}{CI}=2$

$\Leftrightarrow \frac{(a+b+c)^2}{(a+c)(a+b)}=2$

$\Leftrightarrow a^2=b^2+c^2$ nên theo Pitago đảo thì $ABC$ là tam giác vuông tại $A$ 

$\Rightarrow \widehat{BAC}=90^0$

 

Bình luận (3)
TM
8 tháng 4 2021 lúc 21:23

a

 

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết