Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].
Câu 32. Tìm giá trị lớn nhất của biểu thức:
Câu 33. Tìm giá trị nhỏ nhất của: với x, y, z > 0.
Câu 34. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.
Câu 35. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.
Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:
a) ab và a/b là số vô tỉ.
b) a + b và a/b là số hữu tỉ (a + b ≠ 0)
c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)
Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 38. Cho a, b, c, d > 0. Chứng minh:
Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1
Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
Câu 32:
Ta có: \(x^2-6x+17=\left(x-3\right)^2+8\ge8\)
\(\Rightarrow\dfrac{1}{\left(x-3\right)^2+8}\le\dfrac{1}{8}hay\dfrac{1}{x^2-6x+17}\le\dfrac{1}{8},\forall x\)
Vậy GTLN của biểu thức là \(\dfrac{1}{8}\) khi x=3
Câu 34:
Áp dụng bất đẳng thức buniakovsky ta có:
2(x2 + y2) = (12 +12)(x2 +y2) ≥ ( x+ y)2 = 42 = 16
-> A ≥ 8
Dấu ' = ' xảy xa khi và chỉ khi x = y = 2