Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

NH

Câu 1:Cho ∆ABC cân tại A,gọi M là trung điểm của BC sao cho BM=MC

a, Chứng minh rằng: ∆ABM=∆ACM

b, Chứng minh rằng:AM BC

c, Từ M,vẽ MKAC tại K,MHAB tại H. Chứng minh rằng:BH=CK

d, Từ B,vẽ BPAC tại P,tia MH và BP cắt nhau tại I.Chứng minh rằng: ∆IBM là ∆cân

e, Chứng minh rằng : BP//MK

KS
12 tháng 5 2021 lúc 15:46

a) Xét ΔABM và ΔACM có:
AB=AC ( ΔABC cân tại A)
Cạnh AM chung  

MB=MC (gt)

⇒ ΔABM=ΔACM (c.c.c)

Vậy ΔABM=ΔACM
b) Vì ΔABM=ΔACM (cmt)
⇒ ∠AMB=∠AMC (2 góc tương ứng)
Ta có:∠AMB+∠AMC=180 ( 2 góc kề bù)
⇒ AMB=AMC=1800/2=900
⇒ AM⊥BC

Vậy AM⊥BC

c) Vì MK⊥AC (gt)

⇒ ∠MKA=∠MKC=900

Vì MH⊥AB (gt)

⇒ ∠MHA=∠MHB=900

Xét ΔHBM và ΔKCM có:

∠MHB∠=MKC=900

MB=MC (gt)

∠HMB∠=KMC (đối đỉnh)

⇒ ΔHBM = ΔKCM (cạnh huyền - góc nhọn)

⇒ BH=CK (2 cạnh tương ứng)

Vậy BH=CK

Mik mỏi tay lám rùi bạn tự làm phần sau nhé

 

Bình luận (0)
NP
12 tháng 5 2021 lúc 16:21

xét ΔABM và ΔACM có:

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACM}\)(ΔABC cân tại A)

BM=CM(M là trung điểm của BC)

⇒ΔABM=ΔACM(c-g-c)

\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)(1)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)(2)

từ (1)và(2)⇒\(\widehat{ABM}=\widehat{ACM}=\dfrac{180^o}{2}=90^o\)

hay AM⊥BC(đ.p.ch/m)

xét 2 tam giác vuông HBM và KCM có

MC=MB(M là trung điểm của BC)

\(\widehat{HBM}=\widehat{KCM}\)(ΔABC cân tại A)

⇒ΔHBM=ΔKCM(c.huyền.g.nhọn)

⇒BH=CK(2 cạnh tương ứng)

vì BP⊥AC và MK⊥AC⇒BP//MK

vì ΔHBM=ΔKCM nên 

\(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng)

Mà \(\widehat{KMC}=\widehat{PBM}\)(2 góc đồng vị)

⇒ΔIBM là tam giác cân(đ.p.ch/m)

vì BP⊥AC và MK⊥AC⇒BP//MK(đ.p.ch/m)

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
DB
Xem chi tiết
LG
Xem chi tiết
TD
Xem chi tiết
LG
Xem chi tiết
AM
Xem chi tiết
VA
Xem chi tiết
HT
Xem chi tiết
VM
Xem chi tiết