Phép nhân và phép chia các đa thức

CT

Câu 1: Tìm GTLN

\(A=-x^2-y^2-2xy+4x+2y+5\)

Câu 2:

\(B=2x^2+4y^2+4xy+2x+4y+9\)

TL
23 tháng 11 2017 lúc 17:22

\(Câu\text{ }1:\\ A=-2x^2-y^2-2xy+4x+2y+5\\ =-x^2-x^2-y^2-2xy+2x+2x+2y-1-1+7\\ =-\left(x^2+2xy+y^2\right)+\left(2x+2y\right)-1-\left(x^2-2x+1\right)+7\\ =-\left(x+y\right)^2+2\left(x+y\right)-1-\left(x-1\right)^2+7\\ =-\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-\left(x-1\right)^2+7\\ =-\left(x+y-1\right)^2-\left(x-1\right)^2+7\\ =-\left[\left(x+y-1\right)^2+\left(x-1\right)^2\right]+7\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \left(x+y-1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-1\right)^2+\left(x+y-1\right)^2\ge0\forall x;y\\ \Rightarrow-\left[\left(x-1\right)^2+\left(x+y-1\right)^2\right]\le0\forall x;y\\ \Rightarrow A=-\left[\left(x-1\right)^2+\left(x+y-1\right)^2\right]+7\le7\forall x;y\\ Dấu\text{ }"="\text{ }xảy\text{ }khi:\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(x+y-1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y+1-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\\ Vậy\text{ }A_{\left(Max\right)}=7\text{ }khi\text{ }\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(Câu\text{ }2:\\ B=2x^2+4y^2+4xy+2x+4y+9\\ =x^2+x^2+4y^2+4xy+2x+4y+1+8\\ =\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+x^2+1+8\\ =\left(x+2y\right)^2+2\left(x+2y\right)+1+x^2+8\\=\left[\left(x+2y\right)^2+2\left(x+2y\right)+1\right]+x^2+8\\ =\left(x+2y+1\right)^2+x^2+8\\ Do\text{ }x^2\ge0\forall x\\ \left(x+2y+1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+2y+1\right)^2+x^2\ge0\forall x;y\\ \Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\forall x;y\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}x^2=0\\\left(x+2y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x+2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\\ Vậy\text{ }B_{\left(Min\right)}=8\text{ }khi\text{ }\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right. \)

\(\)

Bình luận (0)
CT
23 tháng 11 2017 lúc 16:53

Chữa đề: \(A=-2x^2-y^2-2xy+4x+2y+5\)

Bình luận (0)
N2
23 tháng 11 2017 lúc 17:47

a,\(A=-2x^2-y^2-2xy+4x+2y+5\)

\(=-\left(x^2+y^2+2xy-2x-2y+1\right)-\left(x^2-2x+1\right)+7\)

\(=-\left(x+y-1\right)^2-\left(x-1\right)^2+7\)

Do \(-\left(x+y-1\right)^2\le0\left(\forall x;y\right)\)

\(-\left(x-1\right)^2\le0\left(\forall x\right)\)

\(\Rightarrow-\left(x+y-1\right)^2-\left(x-1\right)^2\le0\left(\forall x\right)\)

\(\Rightarrow-\left(x+y-1\right)^2-\left(x-1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+y-1\right)^2=0;-\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1;y=0\)

Vậy \(MaxA=7\Leftrightarrow x=1;y=0\)

b,Đề sai ak bn

Bình luận (1)

Các câu hỏi tương tự
DL
Xem chi tiết
CA
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
CT
Xem chi tiết
NC
Xem chi tiết
MT
Xem chi tiết