Chương I - Căn bậc hai. Căn bậc ba

SX

câu 1 : Thực hiện phép tính :

1. \(\sqrt{0,36.100}\) 2. \(\sqrt[3]{-0,008}\) 3.\(\sqrt{12}+6\sqrt{3}+\sqrt{27}\)

4. \(\dfrac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}\)

câu 2 : Rút gọn biểu thức

1. \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) ( a,b > 0 )

2.(\(\left(\sqrt{ab}-\sqrt{\dfrac{a}{b}}+\dfrac{1}{a}\sqrt{4ab}+\dfrac{1}{b}\sqrt{\dfrac{b}{a}}\right):\)\(\left(1+\dfrac{2}{a}-\dfrac{1}{b}+\dfrac{1}{ab}\right)\)với a,b > 0

câu 3 : Tìm x

1. \(\sqrt{4x}+\sqrt{\dfrac{x}{4}}+\dfrac{1}{2}\sqrt{49x}=6\)

2. 3x + \(\sqrt{3x-7}\)=7

câu 4 : Cho biểu thức : A = \(\left[1:\left(1-\dfrac{\sqrt{a}}{1+\sqrt{a}}\right)\right].\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)

1. Tìm điều kiện của a để A có nghĩa.

2. Rút gọn biểu thức A.

3. Với giá trị nguyên nào của a thì A có giá trị nguyên?

câu 5 : Chứng tỏ rằng : \(\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}=5\)

TD
4 tháng 10 2017 lúc 9:10

Câu 1 :

a ) \(\sqrt{0,36.100}=\sqrt{36}=6\)

b ) \(\sqrt[3]{-0,008}=\sqrt[3]{\left(-0,2\right)^3}=-0,2\)

c ) \(\sqrt{12}+6\sqrt{3}+\sqrt{27}=2\sqrt{3}+6\sqrt{3}+3\sqrt{3}=11\sqrt{3}\)

Bình luận (0)
TD
4 tháng 10 2017 lúc 9:13

Câu 2 :

a ) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}=a-\sqrt{ab}+b\)

Bình luận (0)
UK
4 tháng 10 2017 lúc 17:08

Câu 5: Đặt biểu thức là A

Ta có: \(A^3=70-\sqrt{4901}+70+\sqrt{4901}+3\sqrt[3]{\left(70-\sqrt{4901}\right)\left(70+\sqrt{4901}\right)}\left(\sqrt[3]{70-\sqrt{4901}+\sqrt[3]{70+\sqrt{4901}}}\right)\)

\(A^3=140-3A\)(Cái này tự hiểu nhỉ :v)

Tới đây thì phân tích đa thức thành nhân tử và nhận A=5 :v

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
DD
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
MN
Xem chi tiết
LL
Xem chi tiết