Ôn tập cuối năm phần số học

VL

Câu 1 : cho tam giác Abc nhọn (AB ‹ AC) có hai đường cao BD VÀ cE cắt nhau tại H.

a) chứng minh: tam giác ABD ~ tam giác ACE.

b) chứng minh: HD.HB = HE.HC

c) AH cắt BC tại F. Kẻ FI vuônh góc AC tại I. Chứng minh \(\dfrac{IF}{IC}=\dfrac{FA}{FC}\)

H24
30 tháng 4 2017 lúc 21:32

Bạn tự vẽ hình nhen ,mình giải đây

a) xét tam giác ABD và tam giác ACE

góc D=góc E(=90)

góc A chung

=> 2 tam giác đồng dạng

b) xet tam giác HEB và HDC

Góc HEB=góc HDC(=90)

góc ABD = góc ACE( theo câu a)

=> tam giác HEB đồng dạng tam giác HDC ( gg)

=> \(\dfrac{HB}{HE}=\dfrac{HC}{HD}\Leftrightarrow HB.HD=HE.HC\)

c) Ta có: AF là đường cao thứ 3 ( đi qua giao điểm của 2 đường cao)

Xét tam giác FIC và tam giác AFC có:

góc FIC = góc AFC (=90)

góc C chung

=> 2 tam giác trên đồng dạng

=> \(\dfrac{IF}{IC}=\dfrac{FA}{FC}\left(đpcm\right)\)

Nhớ tick cho mình nhé

Chúc bạn học tốthaha

Bình luận (0)
NT
30 tháng 4 2017 lúc 21:34

A B C E H D I F

Giải:
a, Ta có: \(\widehat{ABD}+\widehat{BAD}=90^o\left(\widehat{ADB}=90^o\right)\) hay \(\widehat{ABD}+\widehat{BAC}=90^o\) (1)

\(\widehat{ACE}+\widehat{CAE}=90^o\left(\widehat{AEC}=90^o\right)\) hay \(\widehat{ACE}+\widehat{BAC}=90^o\) (2)

Từ (1), (2) \(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

\(\widehat{ADB}=\widehat{AEC}=90^o\)

\(\Rightarrow\Delta ABD\) đồng dạng với \(\Delta ACE\) ( g-g )

b, Do \(\widehat{EHB}=\widehat{DHC}\) ( đối đỉnh ), \(\widehat{BEH}=\widehat{CDH}=90^o\)

\(\Rightarrow\Delta EHB\) đồng vị với \(\Delta DHC\)

\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HE}{HD}\Rightarrow HD.HB=HE.HC\left(đpcm\right)\)

c, BD, CE là 2 đường cao của t/g ABC cắt nhau tại H

\(H\in AF\)

\(\Rightarrow\)AF cũng là đường cao của t/g ABC

Do \(\widehat{AFC}=\widehat{CIF}=90^o\), \(\widehat{ACF}\): góc chung

\(\Rightarrow\Delta AFC\) đồng vị với \(\Delta FIC\)

\(\Rightarrow\dfrac{FA}{FI}=\dfrac{FC}{IC}\Rightarrow\dfrac{IF}{FA}=\dfrac{IC}{FC}\Rightarrow\dfrac{IF}{IC}=\dfrac{FA}{FC}\left(đpcm\right)\)

Vậy...

Bình luận (6)

Các câu hỏi tương tự
LM
Xem chi tiết
PD
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
NY
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết