Violympic toán 9

NT

câu 1 cho biểu thức

\(p=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\) với \(x\ge0;x\ne1\)

a)rút gọn p

b)tìm x để p=-1

c)tìm x nguyên để p có giá trị nguyên

câu 2 cho hàm số y=ax+3. tìm a biết

a)đồ thị hàm số song song với đường thẳng y=-2x. vẽ đồ thị hàm số tìm được

b)đồ thị hàm số đi qua điểm A(2;7)

TN
27 tháng 12 2018 lúc 21:32

Câu 1)

a) \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)b) \(P=-1\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Để P có giá trị nguyên thì \(\left(\sqrt{x}+1\right)\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}+1\ge1\)\(\Rightarrow\left(\sqrt{x}+1\right)\in\left\{1;2\right\}\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}+1=1\\\sqrt{x}+1=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy x=0 thì P\(\in Z\)

Câu 2)

a) Ta có hàm số y=ax+3 song song với y=-2x\(\Rightarrow a=-2\)

Vậy hàm số đã cho có dạng y=-2x+3

_ y=-2x+3

x=0\(\Rightarrow y=3\)

y=0\(\Rightarrow x=\dfrac{3}{2}\)

Vậy đồ thị hàm số y=-2x+3 đi qua 2 điểm (0;3);(\(\dfrac{3}{2};0\))

y=-2x+3 1,5 3 y x O b) Ta có đồ thị y=ax+3 đi qua điểm A(2;7)\(\Leftrightarrow7=a.2+3\Leftrightarrow2a=4\Leftrightarrow a=2\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
VT
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
NS
Xem chi tiết
VT
Xem chi tiết
NS
Xem chi tiết
VL
Xem chi tiết
TN
Xem chi tiết