Violympic toán 9

CG

Biết \(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\) . Tính x + y.

TP
27 tháng 7 2019 lúc 18:19

\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(x-\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2020\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-2020\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2020}=x-\sqrt{x^2+2020}\)

\(\Leftrightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)(1)

Chứng minh tương tự ta cũng có \(x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)(2)

Cộng theo vế của (1) và (2) ta được :

\(2\left(x+y\right)=\sqrt{x^2+2020}-\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{y^2+2020}\)

\(\Leftrightarrow2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\)

Vậy...

Bình luận (7)

Các câu hỏi tương tự
VB
Xem chi tiết
HT
Xem chi tiết
EO
Xem chi tiết
BA
Xem chi tiết
HN
Xem chi tiết
LA
Xem chi tiết
NL
Xem chi tiết
DN
Xem chi tiết
BL
Xem chi tiết