a, Ta có:
\(\left(2^{\alpha}+2^{-\alpha}\right)^2\\ =\left(2^{\alpha}\right)^2+2\cdot2^{\alpha}\cdot2^{-\alpha}+\left(2^{-\alpha}\right)^2\\ =4^{\alpha}+4^{-\alpha}+2\\ =5+2\\ =7\)
Vậy \(2^{\alpha}+2^{-\alpha}=7\)
b, Ta có:
\(4^{2\alpha}+4^{-2\alpha}=\left(4^{\alpha}\right)^2+\left(4^{-\alpha}\right)^2\\ =\left(4^{\alpha}+4^{-\alpha}\right)^2-2\\ =5^2-2\\ =23\)
Vậy \(4^{2\alpha}+4^{-2\alpha}=23\)