Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
a)Tìm giá trị của a,b biết:
a2- 2a + 6b +b2 = -10
b)Tính giá trị của biểu thức:
A=\(\dfrac{x+y}{z}+\dfrac{x+z}{y}+\dfrac{y+z}{x}\)
nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Cao nhân giúp đỡ e với ạ
e cảm ơn trước
a)\(\dfrac{x}{x-1}-\dfrac{2}{x-1}\)
b)\(\dfrac{4+4x}{3x^2+6x}+\dfrac{x}{3x+6}\)
c)\(\dfrac{x^2-2x}{x-1}\cdot\dfrac{1}{x}:\dfrac{x^2-4}{x^2-2x+1}\)
a). \(C=\dfrac{x^4+x^8+x^{12}+x^{16}+x^{20}+x^{24}+x^{28}+1}{x^3+x^7+x^{11}+x^{15}+x^{19}+x^{23}+x^{27}+x^{31}}\)
b). \(F=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{2011.2012.2013.2014}\)
c). \(\dfrac{14044}{12345}=1+\dfrac{1}{7+\dfrac{1}{8+\dfrac{1}{9+\dfrac{1}{x+\dfrac{1}{y}}}}}\)
Bài 1:Giải các pt chứa ẩn ở mẫu sau:
a) \(\dfrac{2x+1}{x-1}=\dfrac{5\left(x-1\right)}{x+1}\) b) \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) c)\(\dfrac{x-2}{2+x}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
d)\(\dfrac{x+1}{x-2}-\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\) e)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) g)\(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\)
h)\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(2-x\right)}\) j)\(\dfrac{3}{4\left(x-5\right)}+\dfrac{15}{50-2x^2}=\dfrac{7}{6\left(x+5\right)}\) k)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
n)\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)
Thực hiện phép tính
\(a,\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(b,\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(c,\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(d,\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
\(e,\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(f,\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(g,\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
\(h,\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
Tìm điều kiện xác định và rút gọn các biểu thức sau :
a/ \(A=\left(\dfrac{\sqrt{3}}{x^2+x\sqrt{3}+3}+\dfrac{3}{x^3-\sqrt{27}}\right).\left(\dfrac{x}{\sqrt{3}}+\dfrac{\sqrt{3}}{x}+1\right)\)
b/ \(B=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
c/ \(C=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\)
d/ \(\left[\dfrac{1}{x-1}+\dfrac{x^2+1-2x}{\left(x-1\right)^2+3x}-\dfrac{1+4x-2x^2}{x^3-1}\right]:\dfrac{2}{x^2+1}\)
a \(x^2-x=0\) b \(x^2-2x=0\) c (x+1)(x+2)=(2-x)(x+2)
d \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\) đ \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
e \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
f \(5+\dfrac{76}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\)
g \(\dfrac{90}{x}-\dfrac{36}{x-6}=2\) h \(\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{12}\) i \(\dfrac{x+3}{x-3}-\dfrac{1}{x}=\dfrac{3}{x\left(x-3\right)}\)
k \(\dfrac{3}{x+2}-\dfrac{2}{x-2}+\dfrac{8}{x^2-4}=0\) l \(\dfrac{3}{x+2}-\dfrac{2}{x-3}=\dfrac{8}{\left(x-3\right)\left(x+2\right)}\)
m\(\dfrac{x}{2x+6}-\dfrac{x}{2x+2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
n \(\dfrac{x}{x+1}-\dfrac{2x-3}{1-x}=\dfrac{3x^2+5}{x^2-1}\) j \(\dfrac{5}{x+7}+\dfrac{8}{2x+14}=\dfrac{3}{2}\)
q \(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
Cần gấp ạ
a) \(\dfrac{x+1}{x-1}+\dfrac{2x-1}{x}=2-\dfrac{x}{x\left(x-1\right)}\)
b) \(1+\dfrac{1}{x+2}=\dfrac{12}{x^3+8}\)