Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương II : Tam giác

NL

Bài 4: Cho ∆ABC vuông tại A, CK là tia phân giác của góc ACB ( K AB). Trên tia
BC lấy điểm sao cho CN = AC.
a) Chứng minh ∆ACK = ∆NCK
b) Chứng minh CK là đường trung trực của AN
c) Vẽ AD ┴ BC tại D và cắt CK tại H. Chứng minh AN là tia phân giác của góc DAB
d) * Qua H vẽ đường thẳng vuông góc với AD và cắt AC tại E, trên tia đối tia
DA lấy điểm F sao cho AH = DF. Chứng minh EF ┴ FB

H24
27 tháng 3 2020 lúc 12:27
https://i.imgur.com/fA2tFKe.jpg
Bình luận (0)
 Khách vãng lai đã xóa
NT
27 tháng 3 2020 lúc 12:32

Bài 4:

a) Chứng minh ΔACK=ΔNCK

Xét ΔACK và ΔNCK có

AC=NC(gt)

\(\widehat{ACK}=\widehat{NCK}\)(CK là tia phân giác của \(\widehat{ACB}\), N∈BC)

CK là cạnh chung

Do đó: ΔACK=ΔNCK(c-g-c)

b) Chứng minh CK là đường trung trực của AN

Ta có: CA=CN(gt)

⇒C nằm trên đường trung trực của AN(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔACK=ΔNCK(cmt)

⇒KA=KN(hai cạnh tương ứng)

⇒K nằm trên đường trung trực của AN(tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra CK là đường trung trực của AN(đpcm)

c) Chứng minh AN là tia phân giác của \(\widehat{DAB}\)

Ta có: ΔCAK=ΔCNK(cmt)

\(\widehat{CAK}=\widehat{CNK}\)(hai góc tương ứng)

\(\widehat{CAK}=90^0\)(\(\widehat{CAB}=90^0\), K∈AB)

nên \(\widehat{CNK}=90^0\)

⇒NK⊥BC

Ta có: NK⊥BC(cmt)

AD⊥BC(cmt)

Do đó: NK//AD(định lí 1 từ vuông góc tới song song)

\(\widehat{ANK}=\widehat{DAN}\)(hao góc so le trong)(3)

Xét ΔKAN có KA=KN(cmt)

nên ΔKAN cân tại K(định nghĩa tam giác cân)

\(\widehat{KNA}=\widehat{KAN}\)(hai góc ở đáy)(4)

Từ (3) và (4) suy ra \(\widehat{DAN}=\widehat{KAN}\)

mà tia AN nằm giữa hai tia AD,AK

nên AN là tia phân giác của \(\widehat{DAK}\)

hay AN là tia phân giác của \(\widehat{DAB}\)(B∈AK)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HN
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
BQ
Xem chi tiết
GM
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết