Bài 2: Cho nửa đường tròn tâm O đường kính AB = 2R. Trên cung AB lấy hai điểm C và D sao cho C thuộc cung AD (C và D không trùng A và B). Gọi I là giao điểm của AD và BC. Vẽ IH vuông góc với AB tại H.
a) Chứng minh: Tứ giác BDIH nội tiếp được đường tròn.
b) Chứng minh DA là tia phân giác của CDH .
c) Gọi K là trung điểm của BI. Chứng minh: C, H, K, D cùng thuộc một đường tròn CÓ HÌNH NỮA NHA
a: góc ADB=1/2*sđ cung AB=1/2*180=90 độ
Xét tứ giác BDIH có
góc IHB+góc IDB=180 độ
=>BDIH là tứ giác nội tiếp
b: góc IDH=góc IBH=1/2*sđ cung AC=góc ADC
=>DA là phân giác của góc CDH
Đúng 0
Bình luận (0)