Bất phương trình bậc nhất một ẩn

DN

BÀi: :

1.CMr \(a^2+b^2-2ab\ge0\)

2.Cmr \(\dfrac{a^2+b^2}{2}\ge ab\)

3.Cmr \(a\left(a+2\right)< \left(a+1\right)^2\)

4.Cmr \(m^2+n^2+2\ge2\left(m+n\right)\)

5.Cmr \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) với a,b>0

6.Cmr \(\forall x\in R\) đều là nghiệm của bất phương trình \(x^2-x+1>0\)

7.Cmr \(a^4+b^4+c^4+d^4\ge4abcd\)

8. Cm bất đẳng thức \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{a}{c}\)

9.Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) Chứng minh \(xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)

H24
10 tháng 4 2017 lúc 9:52

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

Bình luận (1)
H24
10 tháng 4 2017 lúc 9:40

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

Bình luận (0)

Các câu hỏi tương tự
AT
Xem chi tiết
NY
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NY
Xem chi tiết
AT
Xem chi tiết
AT
Xem chi tiết
CP
Xem chi tiết