Hình lăng trụ đứng. Hình chóp đều.

HM

Bài 1:Cho tam giác ABC, trung tuyến AM, các tia phân giác của các góc AMB , AMC cắt AB, AC theo thứ tự ở D và E

a) Chứng minh DE // BC

b) Cho BC = a, AM = m. Tính độ dài DE

c) Tìm tập hợp các giao diểm I của AM và DE nếu ABC có BC cố định, AM = m không đổi

d) ABC có điều kiện gì thì DE là đường trung bình của nó

 

NT

a: Xét ΔAMB có MD là phân giác

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)

Xét ΔAMC có ME là phân giác

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

Xét ΔABC có \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC

b: M là trung điểm của BC

nên \(MB=MC=\dfrac{BC}{2}=\dfrac{a}{2}\)

Xét ΔAMB có MD là phân giác

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\)

=>\(\dfrac{AD}{DB}=\dfrac{m}{\dfrac{a}{2}}=m:\dfrac{a}{2}=\dfrac{2m}{a}\)

=>\(\dfrac{DB}{AD}=\dfrac{a}{2m}\)

=>\(\dfrac{DB+AD}{AD}=\dfrac{a+2m}{2m}\)

=>\(\dfrac{AB}{AD}=\dfrac{a+2m}{2m}\)

=>\(\dfrac{AD}{AB}=\dfrac{2m}{a+2m}\)

Xét ΔABC có DE//BC

nên \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)

=>\(\dfrac{DE}{a}=\dfrac{2m}{a+2m}\)

=>\(DE=\dfrac{2am}{a+2m}\)

Bình luận (0)
HM
1 tháng 1 lúc 21:29

ko bt

 

Bình luận (0)
HM
1 tháng 1 lúc 21:30

giúp mình  vs

 

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VQ
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
Xem chi tiết
NA
Xem chi tiết
ND
Xem chi tiết