1/ x(x+17)=0
⇒ \(\left[{}\begin{matrix}x=0\\x+17=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-17\end{matrix}\right.\)
2/ (x+1112)(x-3)=0
⇒\(\left[{}\begin{matrix}x+1112=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1112\\x=3\end{matrix}\right.\)
3/ (-x+25)(3-x)=0
⇒\(\left[{}\begin{matrix}-x+25=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=25\\x=3\end{matrix}\right.\)
4/ x(12+x)(7-x)=0
⇒ \(\left[{}\begin{matrix}x=0\\12+x=0\\7-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-12\\x=7\end{matrix}\right.\)
5/ (x-15)(x+2)(-x-3)=0
⇒\(\left[{}\begin{matrix}x-15=0\\x+2=0\\-x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15\\x=-2\\x=-3\end{matrix}\right.\)
\(x\left(x+17\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+17=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-17\end{matrix}\right.\)
Vậy \(x\in\left\{0;-17\right\}\)
\(\left(x+1112\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1112=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1112\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{-1112;3\right\}\)
\(\left(-x+25\right)\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-x+25=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=25\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{25;3\right\}\)
\(x\left(12+x\right)\left(7-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\12+x=0\\7-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-12\\x=7\end{matrix}\right.\)
Vậy \(x\in\left\{0;-12;7\right\}\)
\(\left(x-15\right)\left(x+2\right)\left(-x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-15=0\\x+2=0\\-x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15\\x=-2\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{15;-2;-3\right\}\)