Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

H24

Bài 1: Tính tổng tất cả T các nghiệm thuộc đoạn [0;200\(\pi\)] của phương trình 2cos2x+3sinx+3=0

Bài 2: Tìm số nghiệm của phương trình cos2x+3|cosx|-1=0 trong đoạn \(\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\)

NL
19 tháng 10 2020 lúc 21:09

\(2\left(1-sin^2x\right)+3sinx+3=0\)

\(\Leftrightarrow-2sin^2x+3sinx+5=0\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{5}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\)

\(0\le-\frac{\pi}{2}+k2\pi\le200\pi\Rightarrow1\le k\le100\) (có 100 nghiệm)

Tổng các nghiệm:

\(\sum x=-\frac{\pi}{2}.100+\sum\limits^{100}_{k=1}2k\pi=10050\pi\)

2.

\(\Leftrightarrow2cos^2x-1+3\left|cosx\right|-1=0\)

\(\Leftrightarrow2\left|cosx\right|^2+3\left|cosx\right|-2=0\Rightarrow\left[{}\begin{matrix}\left|cosx\right|=\frac{1}{2}\\\left|cosx\right|=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Pt có 2 nghiệm trên đoạn đã cho \(x=\pm\frac{\pi}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MN
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
CM
Xem chi tiết
QA
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết