Chương IV : Biểu thức đại số

LL

Bài 1: Tính giá trị các biểu thức sau tại: |x| = \(\dfrac {1}{3}\); |y| = 1
a) A= 2x2 - 3x + 5 b) B= 2x2 - 3xy + y2
Bài 2: Tính giá trị các biểu thức A sau biết x + y +1 = 0:
A= x (x + y) - y2 (x + y) + x2 - y2 + 2 (x + y) + 3
Bài 3: Cho x.y.z = 2 và x + y + z = 0. Tính giá trị biểu thức:
A= (x + y)(y + z)(z + x)
Bài 4: Tìm các giá trị của các biến để các biểu thức sau có giá trị bằng 0:
a) |2x - \(\dfrac {1}{3}\)| - \(\dfrac {1}{3}\) b) |2x - \(\dfrac {1}{3}\)| - \(\dfrac {1}{3}\) c) |3x + 2\(\dfrac {1}{3}\)| + |y + 2| = 0 d) (x - 2)2 + (2x - y + 1)2 = 0

DT
11 tháng 1 2018 lúc 21:13

bài 1:

|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1

a

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5

= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5

= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5

= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)

b) +) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1

= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)

+) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1

= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)

Bình luận (0)
DT
11 tháng 1 2018 lúc 21:26

bài 3

x.y.z = 2 và x + y + z = 0

A = ( x + y )( y +z )( z + x )

= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )

= 0 + 2 = 2

bài 4

a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)

=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)

=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)

x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)

2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0

x = 0 : 2 = 2

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
NH
Xem chi tiết
PC
Xem chi tiết
LH
Xem chi tiết
ND
Xem chi tiết
LH
Xem chi tiết
N4
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết