Violympic toán 9

TK

bài 1: rút gọn các biểu thức sau

a, A= 3\(\sqrt{8}\)+\(\sqrt{2}\)-\(\sqrt{72}\)

b, B= \(\sqrt{12}-\sqrt{\left(1-3\sqrt{3}\right)^2}\)+\(\sqrt{\left(\sqrt{3}+4\right)^2}\)

bài 2: tìm x , biết

a, \(\sqrt{4x-4}+3\sqrt{\frac{x-1}{9}}\)=1

b, \(\sqrt{x^2+4x+4}\)=9

bài 3: cho ΔABC vuông tại A, đường cao AH. biết BC=8cm, BH=2cm

a, tính độ dài của các đoạn thẳng AB,AC,AH

b, trên cạnh AC lấy điểm K(K≠A≠C) , gọi D là hình chiếu của A trên BK . CMR; BD.BK=BH.BC

c, CMR: SΔBHD=\(\frac{1}{4}\)SΔBKC.cos\(^2\)gócABD

AR

Bài 1:

a, \(3\sqrt{8}+\sqrt{2}-\sqrt{72}\)

= \(3\sqrt{4.2}+\sqrt{2}-\sqrt{36.2}\)

= \(6\sqrt{2}+\sqrt{2}-6\sqrt{2}\)

= \(\sqrt{2}\)

b, \(\sqrt{12}-\sqrt{\left(1-3\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+4\right)^2}\)

= \(\sqrt{4.3}-\left|1-3\sqrt{3}\right|+\left|\sqrt{3}+4\right|\)

= \(2\sqrt{3}-3\sqrt{3}+1+\sqrt{3}+4\)

= 5

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PM
Xem chi tiết
VH
Xem chi tiết
BL
Xem chi tiết
TK
Xem chi tiết
VH
Xem chi tiết
NA
Xem chi tiết
KA
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
TK
Xem chi tiết