\\(x^3+x^2-x+2\\)
=x3+2x2-x2-2x+x+2
=(x3+2x2)-(x2+2x)+(x+2)
=x2(x+2)-x(x+2)+(x+2)
=(x+2)(x2-x+1)
b. \\(x^3-6x^2-x+30\\)
=x3+2x2-8x2-16x+15x+30
=(x3+2x2)-(8x2+16x)+(15x+30x)
=x2(x+2)-8x(x+2)+15(x+2)
=(x+2)(x2-8x+15)
=(x+2)(x2-5x-3x+15)
=(x+2)[(x2-5x)-(3x-15)]
=(x+2)[x(x-5)-3(x-5)]
=(x+2)(x-5)(x-3)
h)\(a^6+a^4+a^2b^2+b^4-b^6\)
\(=\left(a^4+a^2b^2+b^4\right)+\left(a^6-b^6\right)\)
\(=\left(a^4+a^2b^2+b^4\right)+\left[\left(a^2\right)^3-\left(b^2\right)^3\right]\)
\(=\left(a^4+a^2b^2+b^4\right)+\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
\(=\left(a^4+a^2b^2+b^4\right)\left(1+a^2-b^2\right)\)
a. \(x^3+x^2-x+2=x^3+2x^2-x^2-2x+x+2=\left(x^3+2x^2\right)-\left(x^2+2x\right)+\left(x+2\right)=x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)=\left(x+2\right)\left(x^2-x+1\right)\)
c. \(2x^2-5x-12=2x^2-8x+3x-12=\left(2x^2-8x\right)+\left(3x-12\right)=2x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(2x+3\right)\)
d. \(6x^2-7x-20=6x^2+8x-15x-20=\left(6x^2+8x\right)-\left(15x+20\right)=2x\left(3x+4\right)-5\left(3x+4\right)=\left(3x+4\right)\left(2x-5\right)\)
b. \(x^3-6x^2-x+30=\left(x^3-x\right)-\left(6x^2-30\right)=x\left(x^2-1\right)-6\left(x^2-5\right)=\left(x-6\right)\left(x^2-1\right)\left(x^2-5\right)\)