Phương trình bậc nhất một ẩn

TL

Bài 1: Giải các phương trình sau:

Câu 1.

a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y

c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12

e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5

g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x

2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)

c) 7 – (2x + 4) = – (x + 4) d) (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3

e) (x + 1)(2x – 3) = (2x – 1)(x + 5) f) (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)

g) (x – 1) – (2x – 1) = 9 – x h) (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2

i) x(x + 3)2 – 3x = (x + 2)3 + 1 j) (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)

3. a) 1,2 – (x – 0,8) = –2(0,9 + x) b) 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)

c) 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7

e) 3 + 2,25x +2,6 = 2x + 5 + 0,4x f) 5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42

4.a) (5x-2)/3=(5-3x)/2 b)(10x+3)/12=1+((6+8x)/9)

c)2(x+3/5)=5-(13/5+x) d)7/8x-5(x-9)=(20x+1,5)/6

e)(7x-1)/6+2x=(16-x)/5 f)4(0,5-1,5x)=-(5x-6)/3

g)(3x+2)/2-(3x+1)/6=5/3+2x h)(x+4)/5-(x+4)=x/3-(x-2)/2

i) (4x+3)/5-(6x-2)/7=(5x+4)/3+3 k)(5x+2)/6-(8x-1)/3=(4x+2)/5-5

m)(2x-1)/5-(x-2)/3=(x+7)/15 n)1/4(x+3)=3-1/2(x+1)-1/3(x+2)

Bài 2 Tìm giá trị của k sao cho:

a. Phương trình: 2x + k = x – 1 có nghiệm x = – 2.

b. Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2

c. Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1

NT
13 tháng 2 2020 lúc 19:49

Bài 2:

a) Thay x=-2 vào phương trình 2x+k=x-1, ta được

2*(-2)+k=-2-1

⇔-4+k=-3

⇔k=-3-(-4)=-3+4=1

Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2

b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được

(2*2+1)*(9*2+2k)-5*(2+2)=40

⇔5*(18+2k)-20=40

⇔5*(18+2k)=40+20

⇔18+2k=12

⇔2k=12-18=-6

⇔k=-3

Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2

c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được

2*(2*1+1)+18=3*(1+2)*(2*1+k)

⇔2*3+18=3*3*(2+k)

⇔24=9*(2+k)

\(2+k=\frac{24}{9}=\frac{8}{3}\)

\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)

Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
HK
Xem chi tiết
NH
Xem chi tiết
PK
Xem chi tiết
NA
Xem chi tiết
DC
Xem chi tiết
NK
Xem chi tiết
HN
Xem chi tiết
DC
Xem chi tiết