Violympic toán 9

NH

Bài 1 : Cmr :

a, \(a+\frac{1}{a-1}\ge3\) với mọi a>1

b, \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a \(\in R\)

Bài 2 : Cho a>0. Cmr \(\frac{a^2+5}{\sqrt{a^2+4}}\ge2\)

Bài 3 : Cho a,b,c>0. Cmr \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< 2\)

TP
2 tháng 9 2019 lúc 8:34

Bài 1:

a) Áp dụng BĐT Cô-si:

\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=2\).

b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)

\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)

\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )

Dấu "=" xảy ra \(\Leftrightarrow a=0\).

Bài 2: tương tự 1b.

Bình luận (0)
TP
2 tháng 9 2019 lúc 8:39

Bài 3:

Do \(a,b,c\) dương nên ta có các BĐT:

\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)

Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng theo vế 3 BĐT:

\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )

Bình luận (0)

Các câu hỏi tương tự
NO
Xem chi tiết
TQ
Xem chi tiết
NO
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
TQ
Xem chi tiết
TQ
Xem chi tiết