Chương I - Căn bậc hai. Căn bậc ba

KT

Bài 1: Cho tam giác vuông ABC vuông tại A, đường cao AH, đường phân giác AD. Biết
rằng BH = 63 cm; CH = 112 cm. Tính DH?

NT
17 tháng 8 2021 lúc 22:32

Ta có: BH+CH=BC

nên BC=63+112=175

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=11025\\AC^2=19600\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105cm\\AC=140cm\end{matrix}\right.\)

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{105}=\dfrac{CD}{140}\)

mà BD+CD=BC=175

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{105}=\dfrac{CD}{140}=\dfrac{BD+CD}{105+140}=\dfrac{175}{245}=\dfrac{5}{7}\)

Do đó: \(BD=75\left(cm\right)\)

Ta có: DH+BH=BD

nên DH=BD-BH=75-63=12cm

Bình luận (0)

Các câu hỏi tương tự
KO
Xem chi tiết
HH
Xem chi tiết
TN
Xem chi tiết
NG
Xem chi tiết
H24
Xem chi tiết
YN
Xem chi tiết
LG
Xem chi tiết
NC
Xem chi tiết
AT
Xem chi tiết