Ta có: BH+CH=BC
nên BC=63+112=175
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=11025\\AC^2=19600\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105cm\\AC=140cm\end{matrix}\right.\)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{105}=\dfrac{CD}{140}\)
mà BD+CD=BC=175
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{105}=\dfrac{CD}{140}=\dfrac{BD+CD}{105+140}=\dfrac{175}{245}=\dfrac{5}{7}\)
Do đó: \(BD=75\left(cm\right)\)
Ta có: DH+BH=BD
nên DH=BD-BH=75-63=12cm