Ôn tập cuối năm phần hình học

AH

Bài 1: Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Kẻ đường cao AD, đường phân giác của góc ABC cắt AD tại F và cắt AC tại E.

a. Chứng minh \(\Delta DBA~\Delta ABC\)

b. Tính độ dài các đoạn thẳng BC, AD

c. Chứng minh: FD.EC=FA.EA

ND
9 tháng 5 2018 lúc 20:32

a, Xét \(\Delta DBA\) \(\Delta ABC\) có :

Góc B chung

Góc ADB = Góc BAC ( =90 o )

\(\Rightarrow\Delta DBA\sim\Delta ABC\left(g-g\right)\)

b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )

=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Lại có : \(\dfrac{AD}{AC}=\dfrac{AB}{BC}\left(\Delta DBA\sim\Delta ABC\right)\)

Suy ra : \(AD=\dfrac{AC.AB}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

c, Ta có : BF là tia phân giác của góc B

=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\left(1\right)\)

BE là tia phân giác của góc B

=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\left(2\right)\)

\(\dfrac{BD}{AB}=\dfrac{AB}{BC}\left(\Delta DBA\sim\Delta ABC\right)\left(3\right)\)

Từ (1), (2) và (3) suy ra :

\(\dfrac{FD}{FA}=\dfrac{EA}{EC}\Rightarrow FD.EC=EA.FA\)

Bình luận (0)
KM
17 tháng 5 2019 lúc 22:22

a, Xét ΔDBA ΔABC có :

Góc B chung

Góc ADB = Góc BAC ( =90 o )

⇒ΔDBA∼ΔABC(g−g)

b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )

=> BC = AB2+AC2=62+82=10

Lại có : ADAC=ABBC(ΔDBA∼ΔABC)

Suy ra : AD=AC.ABBC=6.810=4,8(cm)

c, Ta có : BF là tia phân giác của góc B

=> FDFA=BDAB(1)

BE là tia phân giác của góc B

=> EAEC=ABBC(2)

BDAB=ABBC(ΔDBA∼ΔABC)(3)

Từ (1), (2) và (3) suy ra :

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
NM
Xem chi tiết
LC
Xem chi tiết
TN
Xem chi tiết
HH
Xem chi tiết
VD
Xem chi tiết
TU
Xem chi tiết