Chương I: VÉC TƠ

HA

Bài 1: Cho tam giác ABC vuông tại A, BC=10cm, AC=6cm. Tính /\(\overline{CA}-\overline{CB}\)/.

Bài 2: Cho tam giác ABC:

a) Xác định điểm M thỏa mãn: \(\overline{MA}-\overline{MB}+\overline{MC}=0\)

b) G là trọng tâm của tam giác ABC. Chứng minh rằng:\(\overline{GA}+2\overline{GB}+3\overline{GC}=\overline{AC}\)

Bài 3: Gọi I,J lần lượt là trung điểm của các đoạn thẳng AB và CD. Chứng minh rằng:\(\overline{AD}+\overline{BC}=\overline{BD}+\overline{AC}=2\overline{IJ}\)

NP
11 tháng 11 2018 lúc 20:22

1.Theo đl py-ta-go ,AB=8cm.Ta có|\(\overrightarrow{CA}-\overrightarrow{CB}\)| =|\(\overrightarrow{BA}\)|

=>|\(\overrightarrow{CA}-\overrightarrow{CB}\)|=8cm

3.\(\overrightarrow{IJ}\)=\(\overrightarrow{IA}+\overrightarrow{AD}+\overrightarrow{DJ}\)

\(\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{BC}+\overrightarrow{CJ}\) (vì \(\overrightarrow{IA}=\overrightarrow{IB}\);\(\overrightarrow{DJ}=\overrightarrow{CJ}\))

=>2\(\overrightarrow{IJ}=\overrightarrow{AD}+\overrightarrow{BC}\)

Tương tự =>đề bài

Bình luận (0)
H24
11 tháng 11 2018 lúc 20:37

Bài 1:

/CA-CB/=/BA/

sau đó bn dùng pitago là đc

Bài 2

a)MA-MB+MC=0

BA+MC=0

suy ra M là đỉnh còn lại của hình bình hành ABCM

b)xét vế trái ta có:

GA+2GB+3GC

=GB+2GC

=GA+AB+2GA+2AC

=3GA+AB+2AC

=AC

bài 3:

ta có: AD+BC=AB+BD+BA+AC=BD+AC

ta có: BD+AC=BA+AD+AD+DC=2IA+2AD+2DJ=2ID+2DJ=2IJ

bạn thêm ký hiệu vectơ vào hộ mình

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết
NN
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết