Bài 4: Tính chất ba đường trung tuyến của tam giác

HK

Bài 1: Cho tam giác ABC, trung tuyến BM và CN cắt nhau tại G. Biết BM = CN. CMR: AG vuông góc với BC.

Bài 2: Cho tam giác ABC, các trung tuyến AD, BE, CF cắt nhau tại G. CMR:
a, AD < \(\dfrac{AB+AC}{2}\)

b, BE + CF > \(\dfrac{3}{2}\)BC

c, \(\dfrac{3}{4}\) chu vi tam giác ABC < AB + BE + CF < Chu vi tam giác ABC.

Giúp mk vs các pạn !!! Mk cần gấp

@Hoàng Thị Ngọc Anh, @Nguyễn Huy Tú, @Đặng Phương Nam, và nhiều bạn khác nữa!!!

NT
15 tháng 4 2017 lúc 19:12

Bài 1:
A B C N M G H

Giải:

Gọi H là giao của AG và BC

Ta có: CN là đường trung tuyến ứng với AB

BM là đường trung tuyến ứng với AC

Mà BM = CN

\(\Rightarrow\Delta ABC\) cân tại A

Lại có 2 đường trung tuyến BM, CN cắt nhau tại G mà AH cũng cắt tại G nên từ đó AH là đường trung tuyến còn lại.

\(\Rightarrow AH\) cũng là đường cao ứng với cạnh BC

\(\Rightarrow AH\perp BC\)

hay \(AG\perp BC\)

Bình luận (6)
HT
15 tháng 4 2017 lúc 20:19

hình bạn tự vẽ nha

trên tia đối của tia AD lấy H sao cho AD=DH

tg ADB=tg HCD(c.g.c)

Xét \(\Delta ACH\)có AH<AC+CH (bất đẳng thức tam giác)

do AH=2AD nên 2AD<AC+CH

mà CH=AB nên 2AD<AB+AC (đpcm)

b)xét tg BGC có BG+GC>BC(bất đẳng thức tg)

mà BG\(=\dfrac{2}{3}BE\),\(GC=\dfrac{2}{3}CF\) nên \(\dfrac{2}{3}BE+\dfrac{2}{3}CF>BC\Rightarrow BE+CF>\dfrac{3}{2}BC\)(đpcm)

c)tương tự câu a ta có

2BE<AB+AC

2CF<BC+AC

suy ra 2(AD+BE+CF)<2(AB+AC+BC)

hay AD+BE+CF<AB+AC+BC (1)

tương tự câu b ta có CF+AD>\(\dfrac{3}{2}AC;BE+AD>\dfrac{3}{2}AD\)

cộng các vế với vế trong các bất đẳng thức trên ta có

2(AD+BE+CF)>3/2(AB+AC+BC)

\(\Leftrightarrow AD+BE+CF>\dfrac{3}{4}\left(AB+AC+BC\right)\left(2\right)\)

từ (1) và (2) ta có \(\dfrac{3}{4}\left(AB+AC+BC\right)< AD+BE+CF< AB+BC+AC\left(đpcm\right)\)


Bình luận (3)
HL
8 tháng 5 2017 lúc 15:59

bai 2:

tra loi minh viet sau

A B C E F D G

Bình luận (0)
YD
15 tháng 4 2017 lúc 19:30


Gọi G là giao điểm của BM và CN, ta có;
GB=23BM; GC=23CN
Tia AG cắt BC tại I thì IB=IC.mk bit lm đây mấy bn

Bình luận (0)
NM
15 tháng 4 2017 lúc 19:32

Em bỏ cuộc

Bình luận (0)
NM
15 tháng 4 2017 lúc 19:35

Em bỏ cuộc

Bình luận (31)
HT
15 tháng 4 2017 lúc 19:59

bài 2 trông wen lăm sá

Bình luận (4)
HK
15 tháng 4 2017 lúc 20:02

ngonhuminh, Nguyễn Huy Tú giúp mk đi mà!!!

Bình luận (0)
NM
15 tháng 4 2017 lúc 20:34

Bài 1: Cho tam giác ABC, trung tuyến BM và CN cắt nhau tại G. Biết BM = CN. CMR: AG vuông góc với BC.


Gọi G là giao điểm của BM và CN, AG cắt BC tại I.
Ta có GB=23BM" id="MathJax-Element-3-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:18px; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">GB=23BMGC=23CN" id="MathJax-Element-4-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:18px; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">GC=23CN\(GC=\dfrac{2}{3}CN\); \(IB=IC\)
Theo giả thiết\(BN=CN\)"" suy="" ra="" \(gb=""><>
...

Bình luận (0)
DN
15 tháng 4 2017 lúc 21:35

Nghĩ mãi k ra phần a ) bài 2 ! cho thêm t/g nghĩ nhe !

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
LK
Xem chi tiết
TB
Xem chi tiết
NT
Xem chi tiết
HH
Xem chi tiết
HN
Xem chi tiết
HL
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết