Ôn tập cuối năm phần số học

H24

Bài 1: Cho tam giác ABC có 3 đường cao AD; BE; CF đồng quy tại H

a. CMR \(AH.DH=BH.EH=CF.FH\)

b. Biết HA=HD, SABC= 10cm2. Tính SBHC

Bài 2: Cho hình hộp chữ nhật \(ABCD.A^,B^,C^,D^,\) \(AB=5cm,AC=7cm,A^,C=12cm\). Tính thể tích và diện tích xung quanh của hình hộp chữ nhật đó

Bài 3: Giai phương trình

a. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)=24\)

b. \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)=4\)

Bài 4: Giai phương trình

a. \(\dfrac{16}{\sqrt{x-6}}+\dfrac{4}{\sqrt{y-2}}+\dfrac{256}{\sqrt{z-1750}}+\sqrt{x-6}+\sqrt{y-2}+\sqrt{z-1750}=44\)

b. \(x\sqrt{y-1}+y\sqrt{x-1}=xy\)

PL
13 tháng 6 2018 lúc 21:46

Bài 3.a) ( x + 2)( x + 3)( x + 4)(x + 5) = 24

⇔ ( x2 + 7x + 10 )( x2 + 7x + 12) = 24

Đặt : x2 + 7x + 11 = t , ta có :

( t - 1)( t + 1) = 24

⇔ t2 - 25 = 0

⇔ t = 5 hoặc t = -5

+) Với : t = 5 , ta có :

x2 + 7x + 11 = 5

⇔ x2 + x + 6x + 6 = 0

⇔ x( x + 1) + 6( x + 1) = 0

⇔ ( x + 1)( x + 6) = 0

⇔ x = -1 hoặc x = - 6

+) x2 + 7x + 11 = - 5

⇔ x2 + 7x + 16 = 0

Ta thấy : x2 + 2.\(\dfrac{7}{2}x+\dfrac{49}{4}+16-\dfrac{49}{4}=\left(x+\dfrac{7}{x}\right)^2+\dfrac{15}{4}>0\)

⇒ Phương trình vô nghiệm

KL.......

b) ( 4x + 1)( 12x - 1)( 3x + 2)( x + 1) = 4

⇔ 3( 4x + 1)( 12x - 1)4( 3x + 2)12( x + 1) = 4.4.3.12

⇔ ( 12x + 3)( 12x - 1)( 12x + 8)( 12x + 12) = 576

⇔ ( 144x2 + 132x + 24)( 144x2 + + 132x - 12) = 576

Đặt : 144x2 + 132x + 24 = t , ta có :

t( t - 36) = 576

⇔ t2 - 36t - 576 = 0

⇔ t2 + 12t - 48t - 576 = 0

⇔ t( t + 12) - 48( t + 12) = 0

⇔ ( t + 12)( t - 48) = 0

Đến đây dễ rùi , bạn tự giải ra nhé.

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
MM
Xem chi tiết
DN
Xem chi tiết
SD
Xem chi tiết
DN
Xem chi tiết
KK
Xem chi tiết
2S
Xem chi tiết
TV
Xem chi tiết
AA
Xem chi tiết